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Abstract : The aim of this work is the development of a
localisation algorithm of the bioelectric sources using surface
electromyographic (SEMG). In this paper, a feasibility study
is presented : we simulate the resolution of the SEMG
inverse problem. First, we developed a program modelling
the SEMG signal of the biceps brachii. To resolve the inverse
problem, the localisation algorithm uses an estimation
procedure. We minimise the difference between calculated
potential and observed potential by successive iterations. The
procedure is applied successively to the defined zones of the
geometrical arm cross-section. The program locates
accurately an active motor unit in a given zone, regardless of
time and distance.

Keywords : Localisation algorithm, Motor unit estimation,
Gradient method.

I. INTRODUCTION

In the case of neuromuscular diseases, the motor unit can
exhibit some notable modifications to its characteristics.
Until now these alterations are detected by more or less
invasive electromyographic (EMG) techniques, the motor
unit action potentials (MUAPS) being usually detected by
intramuscular EMG [1]. The surface electromyography,
which is a non-invasive technique, would appear to be
another method if information about the bioelectric
sources which have resulted in the SEMG can be obtained
(inverse problem resolution).

The powerful tools of modelling and numerical methods
for solving the EEG and ECG inverse problem [2] do not
seem to be used in SEMG inverse yet. The few works
which treat of source localisation in SEMG are often
based on experimental techniques combined with invasive
methods [3, 4]. The present study introduces a numerical
technique for solving the SEMG inverse problem. This
new approach is based on a modelling of the direct
problem, and on a resolution algorithm by iterative
method.

Il. METHODS

A. SEMG signal modelling

1) Measurement configuration modelling. A
geometrical cross section of the arm containing the
studied muscle is modelised (figure 1). The multi-
electrode recording system is composed of 16 electrodes
regularly distributed on the upper arm half cross section
with an interelectrode distance of 11mm. This system
leads to a transversal recording system suitable for our
problematics.

2) SEMG signal simulation. The one second
simulated signals are sampled at 40 kHz. The
experimental assumptions suppose a weak isometric

contraction. The synthetic signals are based on the single
fibre action potential (SFAP) using a mathematical model
proposed by [5]. The analytical function of that single
fibre action potential is given by :

_t2
V(t,r) =V, (r)-b, (r)tze 75,0

where
Ht =time, r =electrode to fibre distance,

5/2(0 =29 phase magnitude, b.(r)and o, (1) = shape coef.

The motor unit action potential is calculated by the
summation of the SFAPs of the fibres which constitute the
motor unit. In order to generate motor unit action potential
trains (MUAPTS), the firing rate is evaluated from the
MUAPs duration. The firing rate ranges from 7 to 33Hz.
The MUAPTS result from the convolution between the
Dirac comb and MUAPs. The EMG recorded on each
electrode is the summation of the MUAPTS.

B. Localisation of the most probable zone containing
emission points : inverse problem

Our methodology is a simple adaptation of methods
commonly used for solving bioelectrics inverse problem
[2].

1) Mathematic model describing electrical activity.
As the inverse parameters which we intend to estimate are
the electrode-source distances and the positions of the
sources within the arm cross section, we have chosen a
simple direct mathematical model as following :

vy =0, o

V(d,t) = amplitude function of MUAP, a(t) and k(t) =
middle parameters, d = euclidean distance between the
electrode position (Xe,Ye) and the active source (XsYs) in
the recording system plane.

If we consider the potentials received by all electrodes at a
given time, and if we suppose a little variation of a and b
coefficients from an electrode to another, we obtain the
following system :

Oy, =a.X, +b

] . N is the number of

L] : the electrode of the
recording system.

B( v =axXy +b

In this equation system, there appears a redundancy of
information which is explored for the resolution.
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Figure 1 : Localisation of emission sources in a muscular cross section.
The multi-electrode recording system composed of 16 electrodes (e;+) regularly distributed on the upper half of the arm cross section containing the
studied muscle is represented. The (+) marks in zone 1, zone 2, zone 4 represent the average of the coordinates of the sources detected by the program
from MUAPs. In zone 3, one can observe a scattering of micro active regions which were detected on weakly superimposed SEMGs.

2) Gradient method.
Since there is not unique solution to a given system, we
look for a solution by using an optimisation method : The
gradient method. This method facilitates the minimisation
of a cost function :

N N
c :i El(Yi,calculated ) Yi,observed ) = igl(a'xi *b- Yi,observed 3

Yi, calculated = |09(Vi, calculated): Yi, observed — Iog(vi,observed) ' Vi,
calculated €1 Vionservea are the squares of the calculated and

observed amplitude on the i electrode at the t instant.
The explicit expression is :

N
C= z (a'log(\/(xei - Xs)2 + (yei - ys)z) +b- Yi,observed )2
1=1

The gradient method is based on the following iterative
principle : u(k +1) = u(k) — pdC(u(k))

Where u = (a,b,Xs,Ys) a vector, 0JC = gradient, p = the step
and k = iteration number.

The values of a, b, X, and ys are obtained when the
minimum cost is reached.

3) Algorithm description. The algorithm based on
the method previously described computes the coordinates
of a source at a given time by minimising the difference
between calculated potential and observed potential. The
algorithm can be described by the four following steps :
Step 1: Cross section zoning . The program determines
four detection zones as indicated in
figure 1. Therefore, the algorithm can locate one active
region at most per zone and per instant.

Step 2 : Initialisation of the iterative loop. The values of
ainit and by are determined from the maximum amplitude

-2-

of potential for two given distances. In order to determine
Xinit, and Yinie, the initial position of the source, the program
seeks the electrode which gives the highest potential
magnitude.

Step 3 : Threshold value and stop criteria. Very low values
of the potential tend to make the algorithm diverge.
Therefore, the program determines a threshold under
which the localisation procedure is not started. Stop
criteria are defined zone per zone. The stop criterion is
reached when the difference between the calculated
amplitude and the observed amplitude is less than 10%.
Step 4 : Regionalization and display. The program runs
along the successive instants of the signal and the
localisation procedure starts only when all the previous
conditions are fulfilled. The results are displayed on the
screen and stored in a file.

I1l. RESULTS AND DISCUSSION

Some synthetic signals generated by our program are
shown in figure 1. Three groups of MUAPs (zone 1,
zone2, zone 4) and a SEMG (zone 3) are illustrated.
According to the nature of this study (feasibility of the
inverse problem in SEMG), the modelisation was made
with a few simplifying hypotheses in mind to facilitate the
implementation of the localisation algorithm. This
modelisation is nevertheless inspired by previous works
[6], and the shapes of the synthetic MUAPS are similar to
those encountered in the literature [7]. A model built with
more fundamental physiological parameters such as
conduction velocity, fibre diameter, and the anisotropy of



the middle, will be needed for the next stages of this
research.

The signals, which we simulated, allowed us to have a
bank of signals available for testing the algorithm of the
inverse problem. The analytical function used to simulate
those signals does not intervene in the inverse problem
resolution.

The localisation algorithm was first tested on a simple
case, one active motor unit per zone. The result is shown
in figure 1 (zone 1, zone 2, zone 4). The average of the
coordinates of the sources detected by the program was
calculated. It was found that the resulting average point
was always near the centre of the motor unit. The second
group of tests was carried out on weakly superimposed
SEMGs : a set of micro active regions was detected
(figure 1 zone 3). These micro regions scattered on the
muscular zone are difficult to interpret by our present
algorithm.

In order to reconstruct the potential distribution within a
muscle, one would wish to invert one of the mathematical
formulation which makes it possible to approach a SEMG
signal. However, because of the ill-posed nature of the
problem, such an inversion is impossible without
introducing a lot of errors in the solution. Techniques of
optimisation, therefore, are used to minimize the effect of
the error and to reconstruct a solution that is
physiologically meaningful. The algorithm proposed in
this paper is based on this theory.

IV. CONCLUSION

For this feasibility study, the localisation algorithm
implemented was tested on MUAPs and SEMGs
generated by the simulation program. The localisation
program locates accurately a motor unit active in a given
zone, regardless of time and distance. This first approach
shows that a better localisation of the sources directly
from a SEMG requires a signal pre-processing: its
decomposition into its constituent action potential trains.
When several motor units are active, the present program
shows an evolution of the emission zones. An evolutive
topological image of active MUs is thus obtained. The
study of this image could make the observation of the
spatial organisation of MUs possible in cases of
neuromuscular diseases.
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